skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bo, Rui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. Free, publicly-accessible full text available December 1, 2025
  3. null (Ed.)
    The dynamic non-linear state-space model of a power-system consisting of synchronous generators, buses, and static loads has been linearized and a linear measurement function has been considered. A distributed dynamic framework for estimating the state vector of the power system has been designed here. This framework employs a type of distributed Kalman filter (DKF) known as a Kalman consensus filter (KCF) which is located at distributed control centers (DCCs) that fuse locally available noise ridden measurements, state vector estimates of neighboring control centers, and a prediction obtained by the linearized model to obtain a filtered state vector estimate. Further, the local residual at each control center is checked by a median chi-squared detector designed here for bad data/Gaussian attack detection. Simulation results show the working of the KCF for an 8 bus 5 generator system, and the efficacy of the median chi-squared detector in detecting the DCC affected by Gaussian attacks. 
    more » « less